Tsallis Entropy and Generalized Shannon Additivity
نویسندگان
چکیده
The Tsallis entropy given for a positive parameter α can be considered as a generalization of the classical Shannon entropy. For the latter, corresponding to α = 1, there exist many axiomatic characterizations. One of them based on the well-known Khinchin-Shannon axioms has been simplified several times and adapted to Tsallis entropy, where the axiom of (generalized) Shannon additivity is playing a central role. The main aim of this paper is to discuss this axiom in the context of Tsallis entropy. We show that it is sufficient for characterizing Tsallis entropy, with the exceptions of cases α = 1, 2 discussed separately.
منابع مشابه
Nongeneralizability of Tsallis Entropy by means of Kolmogorov-Nagumo averages under pseudo-additivity
As additivity is a characteristic property of the classical information measure, Shannon entropy, pseudo-additivity of the form x+qy = x+y+(1−q)xy is a characteristic property of Tsallis entropy. Rényi in [1] generalized Shannon entropy by means of Kolmogorov-Nagumo averages, by imposing additivity as a constraint. In this paper we show that there exists no generalization for Tsallis entropy, b...
متن کاملOn Generalized Measures of Information with Maximum and Minimum Entropy Prescriptions
Kullback-Leibler relative-entropy or KL-entropy of P with respect to R defined as ∫ X ln dP dR dP , where P and R are probability measures on a measurable space (X,M), plays a basic role in the definitions of classical information measures. It overcomes a shortcoming of Shannon entropy – discrete case definition of which cannot be extended to nondiscrete case naturally. Further, entropy and oth...
متن کاملUniqueness of Nonextensive entropy under Renyi's Recipe
By replacing linear averaging in Shannon entropy with Kolmogorov-Nagumo average (KN-averages) or quasilinear mean and further imposing the additivity constraint, Rényi proposed the first formal generalization of Shannon entropy. Using this recipe of Rényi, one can prepare only two information measures: Shannon and Rényi entropy. Indeed, using this formalism Rényi characterized these additive en...
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملTsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions
The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Axioms
دوره 6 شماره
صفحات -
تاریخ انتشار 2017